

Access Control

Dr George Danezis

(g.danezis@ucl.ac.uk)

Resources

• Key paper: Carl E. Landwehr: Formal Models for Computer
Security. ACM Comput. Surv. 13(3): 247-278 (1981)
– See references to other optional papers throughout slides.

• Ross Anderson “Security Engineering” Parts 4.1 – 4.2

• Dieter Gollmann “Computer Security” Chapter 4

• Special thanks to: Ninghui Li's course on “Access Control:
Theory and Practice” (CS590U Purdue 2006)

What is “access control”?

• Access control systems are a security mechanism that ensures all accesses and
actions on system objects by principals are within the security policy.

• Example questions access control systems need to answer:

– Can Alice read file “/users/Bob/readme.txt”?

– Can Bob open a TCP socket to “http://abc.com/”?

– Can Charlie write to row 15 of table BILLS?

• If yes, we say they are “authorized” or has “permission”,

• If not they are “unauthorized” and “access is denied”.

• Only events within the security policy should be authorized.

• Seems like a simple enough mechanism to implement?

What can go wrong with Access Control?

• Expressiveness: How to completely express high level policies
in terms of access control rules?

• Efficiency: Access control decisions occur often, and need to be
dealt with quickly.

• Full Mediation: How do you know you have not forgotten some
checks?

• Safety: How do you know your access control mechanism
matches the policy?

Within top-25 CWE vulnerabilities

• CWE-306 Missing Authentication for Critical Function

• CWE-862 Missing Authorization

• CWE-798 Use of Hard-coded Credentials

• CWE-311 Missing Encryption of Sensitive Data

• CWE-807 Reliance on Untrusted Inputs in a Security Decision

• CWE-250 Execution with Unnecessary Privileges

• CWE-863 Incorrect Authorization

• CWE-732 Incorrect Permission Assignment for Critical Resource

• CWE-327 Use of a Broken or Risky Cryptographic Algorithm

• CWE-307 Improper Restriction of Excessive Authentication Attempts

• CWE-759 Use of a One-Way Hash without a Salt

Where does access control (usually) fits?

• (Usually) The system needs to bind the actor to a principal before authorization.

– What is a principal? It is the abstract entity that is authorized to act.

– Principals control users, connections, processes, …

• That is called “Authentication” (e.g. user name / password)

• The mechanisms that do authentication and authorization are in the TCB!

Authentication
Authorization

(Access control)Write?
Write!

Mandatory and Discretionary Access Control

• Key concept: “Mandatory Access Control” (MAC)
– Permission are assigned according to the security policy.

• e.g. (Privacy) Hospital records can only be accessed by medical staff. Doctor cannot
decide to give non-staff access.

– Use within organizations with a strong need for central controls and a central
security policy.

• Key concept: “Discretionary Access Control” (DAC)
– All objects have “owners”.

– Owners can decide who get to do what with “their” objects.

– UNIX, Windows, Facebook (?)

– Note: there is still a security policy! DAC is a mechanism.

Key Concept: The Access Control Matrix

• Consider sets of:
– Objects (o).

– A subset of objects called subjects (s).

– A set of access rights (r).

• The access control matrix represents all permitted triplets of
(subject, action, access right).

• Optional Reading: B. Lampson. Protection. Proc. 5th Princeton
Conf. on Information Sciences and Systems, Princeton, 1971.
Reprinted in ACM Operating Systems Rev. 8, 1 (Jan. 1974), pp 18-
24.

An example Access Control Matrix

• Consider:

– S: Alice, Bob

– O: file1, file2, file3 (we omit Alice and Bob)

– R: read, write

file1 file2 file3

Alice Read,
write

read

Bob Read,
write

Read,
write

Can Alice read file1?
Can Bob write file1?
Can Alice write file3?

Beyond “static” Access Control

• Who sets the access control matrix?
– DAC: the owners of objects set the permissions.

• Dual role of the access control matrix:
– Manages the rights of subjects to perform actions on objects.

– Manages the rights subjects can give (or take) to other subjects

• The access control matrix can now change according to
some rules. Which rules?

The Graham-Denning Model

• Each object has an “owner”
• Each subject has a “controller”
• A right may be transferable (with *) or not.

Alice Bob file1 file2 file3

Alice control owner read

Bob control Read,
write

Owner,
read

Can Alice read file1?
Can Alice read file3?
Can Bob read file3?

Graham-Denning Model: 8 Commands
Creating objects and subjects

• (1) Subject x creates object o
– Add column for o

– Add (x, o, “owner”)

• (2) Subject x creates subject s
– Add row and column for s

– Add (x, s, “control”) and (x, s, “owner”)

Objects start off
being owned by whoever

created them.

Useful for restricting
privileges

(as we will see)

Graham-Denning Model: 8 Commands
Destroying objects and subjects

• (3) subject x destroys object o
– If (x, o, “owner”) then delete column o

• (4) subject x destroys subject s
– If (x, s, “owner”) then delete column s

Only owners can delete what they own.

Graham-Denning Model: 8 Commands
Granting and Transferring rights

• (5) subject x grants a right r/r* on object o to subject s
– If (x, o, “owner”) then Add (s, o, r/r*)

• (6) subject x transfers a right r/r* on object o to subject s
– If (x, o, r*) then Add (s, o, r/r*)

• Key concept: “Delegation”

r* – means a subject has the right to transfer the right r/r*

Graham-Denning Model: 8 Commands
Deleting “own” rights

• (7) subject x deletes right r/r* on object o from
subject s
– If (x, s, “control”) or (x, o, “owner”)

– Then Delete (s, o, r/r*)

• Note:
– Key concept: “Revocation” – removing permissions.

– Either x owns the object or controls the subject.

Graham-Denning Model: 8 Commands
Querying

• (8) subject x checks what rights subject s has o
object o
– If (x, s, “control”) or (x, o, “owner”)

– Then return (s, o, *)

• Why?
– Does not affect the state of the matrix

– But provides a privacy property

Exercise: Implement a least privilege policy
using the Graham-Denning Model

• Aim: Alice is the owner of file1. She wants to execute
an application in a process, that can only read file1.
How can she use Graham-Denning to achieve this?

• Starting state:
– (“Alice”, “file1”, “Owner”)

Solution

Alice file1

Alice owner, Control owner

Alice Alice0 file1

Alice owner, control owner, control owner

Alice0 read

Alice Alice0 file1

Alice owner, control owner, control owner

Alice0

Question: Why do all this?

Graham-Denning Cheat Sheet

• (1) Subject x creates object o

• (2) Subject x creates subject s

• (3) subject x destroys object o

• (4) subject x destroys subject s

• (5) subject x grants a right r/r* on object o to subject s

• (6) subject x transfers a right r/r* on object o to subject s

• (7) subject x deletes right r/r* on object o from subject s

• (8) subject x checks what rights subject s has o object o

Alice Bob file1 file2 file3

Alice control owner read

Bob control Read,
write

Owner,
read

Could Alice read file1?

The question of Safety

• The Access control matrix needs to implement the security policy.

– It is not the security policy, it is a security mechanism!

• Discretionary mechanisms may allow owners, or others to grant rights.

• Given a specific starting state of the access control matrix, and rules for
assigning rights (like Graham-Denning), can we prove any properties of
all reachable states?

– Such as (x, o, r) will never be granted.

The Harrison-Ruzzo-Ullman Model (HRU)
(Brace for some theory!)

• A general framework to define access control policies.

– e.g. Graham-Denning

• Study whether any properties about reachable sets can be stated.

– These are “Safety properties”

– i.e. can a sequence of transitions reach a state of the matrix with (x, o, r)?

• Why? This would be used to build a “security argument” that the access control
policy realizes some properties of the security policy!

• Optional reading: Michael A. Harrison, Walter L. Ruzzo, Jeffrey D. Ullman:
Protection in Operating Systems. Commun. ACM 19(8): 461-471 (1976)

Entities in the HRU model

• The definitions of a protection system
– A fixed set of rights R

– A fixed set of commands C

• The state of the protection system
– A set O of objects

– A set S of subjects (where S is a subset of O)

– An access control matrix defining all (s, o, r)

• Commands take the system from one state to another.

Commands in the HRU model

• The general form of a command is:
– Command c(parameter)

If (preconditions on parameters)
Then (operations on parameters)

• Example: grant_read
– Command grant_read(x1, x2, y)

If (x1, y, “own”)
Then enter (x2, y, “read”)

Six primitive operations in the HRU model

• Enter (s, o, r):

– s in S and o in O

• Delete (s, o, r):

– s in S and o in O

• Create subject s

– s not in S

• Create object o

– o not in O

• Delete subject s

– s in S

• Delete object o

– o in O and o not in S

• Exercise:
– Define the Graham-

Denning model using
the HRU formalism of
commands and
operations.

The safety problem

• “Suppose a subject s plans to give subjects s'
generic right r to object o. If we enter (s',o, r) to the
current matrix, could this right r be entered
somewhere else?” – Li

• Set of valid states defined by command transitions
– Should we remove s from the matrix?

– Should we remove “reliable” subjects from the matrix?

– Caveats ...

The safety problem is HRU

• In the general case? Undecidable
– We can encode a Turing machine using an HRU model

• Without delete/destroy? Undecidable

• Without create? PSPACE-complete
– finite and enumerable states

• Single-operation?
– Each command has a single operation in its body

– When a subject is created it cannot be assigned any rights

– All subjects are created equal

– Result: Decidable

The lessons from HRU

• A deceptively simple framework for describing access control
rules.

• Still impossible to build a security argument in general.

• Do not despair!
– For some models safety can be checked.

– In discretionary models, safety may not be such an issue.

– Mandatory access control models more strict to avoid these
problems.

The Take-Grant Model
Definition of the state

• Safety can be decided in linear time!

• State is represented by a graph:

– Subjects and Objects are represented as vertices of a graph.

– Rights are represented by directed edges.

• Example:

• Optional paper: Richard J. Lipton, Lawrence Snyder: A Linear Time Algorithm for
Deciding Subject Security. J. ACM 24(3): 455-464 (1977)

Alice file1read

The Take-Grant Model
Special actions

• Two special rights: “take” and “grant”
• The “take rule”:

• The “grant rule”:

Alice

file1
read

Bob take Alice file1readBob take

read

Alice
Bob grant

file1read

file1
read

Alice
Bob grant

read

Note I: access control is domain specific

•
Early work focuses on operating system.

–
Objects: files, devices, OS operations, ...

–
Subjects: principals are processes, pipes, ...

•
Hardware:

–
Objects: Memory pages, privileged instructions

–
Subjects: processor mode, protection domains

•
Databases:

–
Objects: tables, records, rows, columns, …

–
Subjects: DB specific, e.g. stored in USERS table.

•
Network:

–
Objecs: hosts, ports, nets, subnets, …

–
Subjects: principals are IP or DNS addresses, TCP
connections

• Mixing domains is meaningless:

– e.g. may not use OS access control to
restrict access to a certain row of a
Database.

• Yet, systems build on top of each other:

– May need to use OS access control to
restrict access to the whole DB file.

• The access control tragedy: you may
need to re-implement access control at
all levels of abstraction.

Note 2: How to store the Access Control
Matrix?

file1 file2 file3

Alice Read,
write

read

Bob Read,
write

Read,
write

(1) Store by Column:
Key concept: “Access control List” (ACL)

Good: can store close to the resource.
Good: revoke rights by resource easy.
Bad: Difficult to audit all rights of a user.

(2) Store by Row:
Key Concept: “Capability”

Good: Store at the user.
Good: Can audit all user
permissions.
Bad: Revocation,
transferability, authenticity?

More to capabilities that a
row representation! (More
later)

(3) Through compact representations or redirection: key and lock, labels, roles,
groups, multiple levels of indirection, … (see RBAC later)

Key concept: “The reference monitor”

• Definition: the part of the systems (usually OS) that
enforces access control decisions.

• 3 properties:
– Complete mediation: must always be called.

– Tamper proof: adversary cannot influence it (in the TCB!)

– Small: to verify its correctness.

• Optional historical reading: Anderson, J. 'Computer Security
Technology Planning Study', ESD-TR-73-51, US Air Force
Electronic Systems Division (1973). Section 4.1.1

Key Concept: “Ambient Authority”

• An implementation strategy for access control.

• Definition: The “principal” (authority) is implicit from some global
property of process.

– “authority that is exercised, but not selected, by its user” (Shapiro et al.)

– Example: open(“file1”, “rw”)
(Note: the subject is missing, but inferred from the process owner)

• Upside:

– no need to repeat all the time the subject.

• Downside:

– least privilege harder to enforce.

– Confused deputy problem.

The Confused Deputy

• Alice (OS user) asks Bob (OS server) to read a
file1, and give her the content nicely formatted.

… “file1” ...!

Alice's Process Bob's Process

read “file1”!

(“Bob”, “read”. “file1”)
Check: Yes!

From http://docs.cherrypy.org/stable/progguide/files/downloading.html

Case Study:

cherrypy web framework
documentation, on how to
implement file downloads

(1) What is going on here?
(2) Find the security bug.
(3) Why is this a case of a
confused deputy?
(4) How do you fix it?

Case Study: The UNIX suid mechanism

• In UNIX “everything is a file”.
Coarse grained ACL:

– Principals: “user”, “group”, “world”.

– Rights: read, write, execute.

– Programs execute with the permissions (“effective userid”) of “caller”.

– Access control: compare the “effective userid” with the quasi-ACL.

• But how to implement a database?

– Alice needs to write in some records but must not on others.

• Solution: suid bit permission

– The program executes with the permission of the “owner” not the “caller”.

– Confused deputy problem … (and other problems).

How to avoid confused deputies?

• Problem is very real:
– In systems with ambient authority it is difficult to express that an

action is taking place “on behalf” of another principal.

– Examples: web servers, system utilities, …

• Solutions:
– Re-implement access control in Bob's process (usual)

– Allow Bob to check authorization for Alice.

– Capability-based architectures may help...
Bob

in TCB!

Capability based architectures

• 3 models of capability systems:
– Capabilities as Access Matrix rows (ACLs as columns)

– Capabilities as physical keys or tickets

– Full object-capability models

• Key paper: Miller, Mark S., Ka-Ping Yee, and
Jonathan Shapiro. Capability myths demolished.
Technical Report SRL2003-02, Johns Hopkins
University Systems Research Laboratory, 2003.

Controversies with Capabilities

• Revocation:
– If capabilities are like “tickets” in the hands of subjects,

how can they be revoked (e.g. by owner)?

• Delegation:
– If capabilities are like tickets, and are first class objects

(i.e. can be referred to and passed as arguments), how
can we restrict delegation?

The object-capability model

• Model:
– Objects interact only by sending messages on references

– References are unforgeable (managed by TCB!)

– A reference can be obtained by:
• Through initialization of process.

• Parenthood: References to created objects are known to object/subject creator.

• Endowment: Given by object parent (if they have one)

• Introduction: If A has ref to B and C, A can send B a message to B with ref. C. B
keeps it for future use.

• Examples:
– Close to: Java object references! (Except: globals, libraries, etc.)

Example: Object Capabilities

Object 1
Alice

Object 3
Printer

Object 4
File 1

Print!

Principals
Are Objects

Messages can
only be passed
on owner paths.

Arrow denote
capability
ownership

Caps. Have a well
Defined interface accessible

to all that have a handle
to them

Delegation: can only happen
on paths and for objects we

have a cap for.

Seven properties of an access control
mechanism implementations

Property Quick test

A. No Designation Without
Authority

Does designating a resource always convey its
corresponding authority?

B. Dynamic Subject Creation Can subjects dynamically create new subjects?

C. Subject-Aggregated Authority
Management

Is the power to edit authorities aggregated by subject?

D. No Ambient Authority Must subjects select which authority to use when
performing an access?

E. Composability of Authorities Are resources also subjects?

F. Access-Controlled Delegation
Channels

Is an access relationship between two subjects X and Y
required in order for X to pass an authority to Y?

G. Dynamic Resource Creation Can subjects dynamically create new objects?

Useful to understand ACLs, and different Capability models

What are the differences between cap.
systems?

ACL Cap. as
row

Cap. as
keys

Object
cap.

A. No Designation Without Authority No Maybe No Yes

B. Dynamic Subject Creation Not usually Yes Yes Yes

C. Subject-Aggregated Authority Management Not usually Yes Yes Yes

D. No Ambient Authority No No Yes Yes

E. Composability of Authorities Maybe Maybe No Yes

F. Access-Controlled Delegation Channels Maybe Maybe No Yes

G. Dynamic Resource Creation Yes Yes Yes Yes

How to implement a revocation?

Why? (Miller, Yee and Shapiro)

Conclusions

• Where next?
– Implementation strategies.

– Policy Definition Languages (e.g. SecPAL).

– Static / Dynamic checks for efficiency.

– Distributed Access control?

• Access control is the workhorse of industrial security systems.
– Mechanism not policy.

– Safety is hard to determine in general.

– Implementation and programming models as ACL / Cap opens up
different possibilities and attacks.

Role Based Access Control

• Problem with ACLs: too many subjects!

– New subjects all the time;

– Subjects leave the organization;

– Subjects rights are similar to other subjects
(e.g. a doctor has the rights of a doctor.)

– Result: large, very dynamic ACLs – Bad.

• Solution: Role Based Access Control

– Assign Roles to subjects

– Subjects select an active role (implicit or explicit)

– Assign permissions to roles

• Result: Subject can only access a resource if they are taking a role they are
assigned, that is permitted to access the resource.

• Optional paper: R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-
Based Access Control Models. IEEE Computer, 29(2):38--47, February 1996.

Problems with Role Based Access Control

• Problem 1: Role Explosion
– Temptation to create fine grained roles, denying benefits of RBAC

– Not that small and simple

• Problem 2: Simple RBAC has limited expressiveness
– Some roles are relative: “George's Doctor”

– Not “any Doctor”

– Problems with implementing least privilege

• Problem 3: Separation of duty policies
– Example policy: Any two doctors can authorize a procedure.

– RBAC Mechanism needs to ensure they are distinct!

Distributed Access Control
(Also known as “Trust Management”)

• So far: Access control assumed to be implemented in a centralized
fashion.

– Single reference monitor

– Single point of authentication

– All authorization managed by one system
(including delegation and revocation)

• “Decentralized Access Control” for larger distributed systems

– Different entities may perform authorization

– Different entities may control fragments of the policy

– Decentralized access decisions (reference monitor)

– Complex policies that combine fragments from many entities.

Example: Renting a house

Alice's Bank
Statement of Creditworthiness

Alice's Previous Landlord
Reference

Government – Statement of Identity

“Negotiation”
(Provision)

Alice
Wants to rent

a house

Bob
Landlord

Bob makes a decision on the basis
of claims about Alice from third parties,
and internal rules about who to believe,

and how to make decisions.

Characteristics of Distributed Authorization

• No central administration
– Authentication, authorization are distributed – each service makes up its

own mind.

• User and service may not have a prior relationship
– Service needs to rely on other services claims about the user

– Services may have a prior relationship between them.

• All of this takes place over a network and some parties that may be
corrupt.
– Secure implementation may need cryptography!

General Approach

• All (distributed) principals can issue statements

– Attributes of principals, permissions, roles, …

– e.g “The head of UCL CS says George is a lecturer”

• All non-local statements (claims) are encoded as public key certificates

– e.g “George is a lecturer” is signed using a the electronic signature key of the
head of UCL CS.

– Principals are reduced to signature verification keys.

• Statements also denote who is relied upon to make decisions (these
are the rules)

– e.g. X can say Y is a lecturer”

What are certificates and electronic
signatures?

• Key concepts: “certificates”, and “certificate chains”

• (Cryptography) An electronic signature has 3 algorithms:

– Generate key pair: yields a signature key and a verification key.

– Sign: using a signature key Alice can “sign” a message M, to generate S

– Verify: using the verification key and S anyone can verify that Alice signed M

– Security property: one cannot produce a signature that would pass “verify” without
knowing the signature key.

• A Certificate is a signed statement about a verification key:

– e.g Alice says Bob is a lecturer → Certificate that binds the verification key of Bob
with “lecturer”, signed with Alice's signature key (can verify with her verification key)

• Certificate chains: why would you rely on Alice's statement about Bob?

– A chain of certificate needs to establish that you can rely on final statement!

A case study:
Simple Distributed Security Infrastructure (SDSI)

• SDSI concepts:
– Principals (are keys) e.g. K, K

1

– Identifiers (are strings) e.g. “Doctor”, “Lecturer”

– Local Names are Principal + Identifier
• e.g. K

UCLCS
 “lecturer”

– Name Strings are Principal + Many Identifiers
• e.g. K

UCL
 “computer science” “lecturer”

SDSI Statements and Reduction Rules

• Statements:
– Principal Identifier => Name String

– K A => B means: “K says A if B”

• Reduction rule:

– Statement K
1
 A

1
 => K

2
 B

1
 … B

m

– Reduces K
1
 A

1
 A

2
 … A

n

– To K
2
 B

1
 … B

m
 A

2
 … A

n

• Goal: Should I (K
me

) give access “read” to someone with a

signature key K
george

– Using statements and rule deduce: K
me

 “read” => K
george

Example of SDSI 2.0 access control
resolution

• Policy: An academic publisher provides read access to
their textbooks to principals that are lecturing in the UK. It
trusts and entity “UK universities” to certify who is a
university.

• Note:
– Different universities may have different rules for who can certify

that a member of staff is a lecturer. At UCL the heads of
department can do this.

– This is not of concern to the publisher!

Example continued ...
Statements by different entities

• The publisher has a key K
me

• The publisher certifies that it accepts valid universities that are
certified by a key K

uni

• K
uni

 certifes that K
ucl

 is a valid university

• K
ucl

 says that it recognizes a lecturer if they are recognized by a

head of department.

• Kucl also says that John is a head of department and certifies
his key is K

john

• K
john

 says george is a lecturer and also certifies his key K
george

Example continued ...
Statements and resolution in SDSI 2.0

• Publisher statements:

– K
me

 “read” => K
me

 “uni” “lecturer”

– K
me

 “uni” => K
uni

 “uni”

• “Universities UK” Statements

– K
uni

 “uni” => K
ucl

• UCL statements

– K
ucl

 “lecturer” => K
ucl

 “head” “lecturer”

– K
ucl

 “head” => K
ucl

 “john”

– Kucl “john” => Kjohn

• John's statements (Head of CS)

– K
john

 “lecturer” => K
john

 “george”

– K
john

 “george” => K
george

• Can I derive:

– K
me

 “read” => K
george

• Yes, there is a valid certificate chain to
authorize the “read”

– K
me

 “read”

=> K
me

 “uni” “lecturer”

=> K
uni

 “uni” “lecturer”

=> K
ucl

“lecturer”

=> K
ucl

 “head” “lecturer”

=> K
ucl

 “john” “lecturer”

=> K
john

 “lecturer”

=> K
john

 “george” => K
george

Key lessons from example

• Note the use of local names and local policies
– Accepting other people's names requires explicit authorization (e.g.

use of “Universities UK”)

– Keys are bound to names locally, and certificate chains are used to
accept keys. (e.g. John certifying K

george
)

• Details of other parties' policies do not need to be known or
concern the publisher.
– eg. UCL says that heads can certify lecturer, other institutions may

have other rules (like the HR department has that authority)

Final thoughts on
Decentralized Access Control

• Links to later topics in the course:

– Applied Cryptography (signatures, SSL, PKI)

– Authentication (single sign-on systems)

• Problem 1: what incentives do institutions have to maintain high quality
electronic certificates?

• Problem 2: how can the publisher know that “lecturer” has the same meaning
in all institutions?

• Optional reading: Ellison, Carl, Bill Frantz, Butler Lampson, Ron Rivest, Brian
Thomas, and Tatu Ylonen. SPKI certificate theory. IETF RFC 2693,
September, 1999.

Exercise on “Trust” and SDSI

• Philosophical formulation:
“In the context of SDSI Alice having the authority to name
entities places her in a position of power” Discuss.
– Hint: what happens to the publisher if UCL makes the wrong decision

on who is a lecturer?

• Reformulation as a technical question:
Consider the statement K

me
 “uni” => K

uni
 “uni”

– Is K
uni

 in the TCB of K
me

?

– Is K
me

 in the TCB of K
uni

?

Exercise on the practice of SDSI

• You are running the postgraduate admissions office at a large university.
You only wish to admit students that have a first degree in computing.

• Some universities keep a central record of who has been a student, and
who has received what degree.

• Other universities are organized around departments who maintain such a
register.

• Define a set of SDSI statements describing the policies in both types of
universities.

• Define the SDSI statement that needs to be resolved for a student K
alice

that is applying to do a postgraduate degree.

• Show how resolution would proceed in both cases.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

